Tetrahedron Letters, Vol.27, No.2, pp 183-186, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

EFFICIENT ASYMMETRIC HYDROGENATIONS OF CAMPHOR-SULTAM-IMIDE-CONJUGATED ALKENES.

Wolfgang Oppolzer <sup>\*</sup>, Robert J. Mills and Marius Réglier. Département de Chimie Organique, Université de Genève, CH-1211 Genève. Switzerland

Abstract: The trisubstituted olefinic bond of sultam-imides  $\underline{2}$  was hydrogenated in the presence of Pd/C with >90% diastereoface discrimination to give after saponification recovered auxiliary  $\underline{7}$  and the  $\beta$ -substituted carboxylic acids  $\underline{5}$  or  $\underline{6}$  in high e.e..

The stereoface-selective addition of hydrogen to various olefinic bonds remains a practical and intellectual problem despite the striking achievement of enantioselective hydrogenations of prochiral Z- $\alpha$ -acylaminoacrylic acids and esters <sup>1</sup>.

As an extension of previous work revealing highly  $\pi$ -face selective Diels-Alder additions of 1,3-dienes to the chiral dienophiles 2 ( $\mathbb{R}^1, \mathbb{R}^2-\mathbb{H}$  and  $\mathbb{R}^1-\mathbb{M}e, \mathbb{R}^2-\mathbb{H}$ )<sup>2</sup> we examined the hydrogenation of the trisubstituted alkenes 2 ( $\mathbb{R}^1, \mathbb{R}^2 - \mathbb{C}H_3$ , Alkyl). Our results are summarized in Scheme 1 and the Tables 1 and 2.

Scheme 1



Successive treatment of sultam  $\underline{7}$  with NaH and the corresponding acid chloride  $\underline{1}$  <sup>3</sup> gave the imides  $\underline{2}$  <sup>6</sup> in 50 to 84% yield after crystallization ( $\underline{2a}$ ,  $\underline{2b}$ ,  $\underline{2g}$ ,  $\underline{2h}$ ) or flash chromatography. Choosing imide  $\underline{2b}$  as the substrate a variety of reagents and reaction conditions for the hydrogenation were first explored (Table 1).

Table 1: Asymmetric Hydrogenation of 2,  $R^1$  = nPr,  $R^2$ =Me: Variation of the Reaction Conditions.

|       |                                 |                       |                   |           |    |    | Rat       | ic | ,a)       |
|-------|---------------------------------|-----------------------|-------------------|-----------|----|----|-----------|----|-----------|
| Entry | Reaction                        | Còndi                 | tior              | ı s       |    |    | <u>3b</u> | :  | <u>4b</u> |
| 1     | LAH/CoCl <sub>2</sub>           |                       | THF               | -78° → RT | 1  | h  | 92        | :  | 8         |
| 2     | LAH solution/CoCl <sub>2</sub>  |                       | Et <sub>2</sub> 0 | -78° → RT | 3  | h  | 16        | :  | 84        |
| 3     | $[Ir(cod)py (PCy)_3]^+ PF_6^-,$ | l atm H <sub>2</sub>  | CH2C12            | RT        | 1  | h  | 61        | :  | 39        |
| 4     | 10% Pd/C                        | 30 psi H <sub>2</sub> | EtOH              | RT        | 48 | h  | 95        | :  | 5         |
| 5     | 10% Pd/C                        | 95 psi H <sub>2</sub> | EtOH              | RT        | 1. | 5h | 98        | :  | 2         |
| 6     | 10% Pt/C                        | 90 psi H <sub>2</sub> | EtOH              | RT        | 17 | h  | 89        | :  | 11        |

After addition of <u>2b</u> (E/Z = 98:2) to a slurry of LiAlH<sub>4</sub> (2.4 moleq.) and CoCl<sub>2</sub> <sup>7</sup> (2.4eq.) in THF at -78° the mixture was allowed to warm to r.t. over 90 min affording a 92:8mixture of <u>3b+4b</u> in good yield (entry 1). Apart from this high degree of topological control it is worth noting that the imide group remained intact under these reaction conditions <sup>7</sup> Unexpectedly, the topicity of the reaction was reversed but less distinct on analogous reduction of <u>2b</u> with a solution of LiAlH<sub>4</sub> (2.0 moleq) and CoCl<sub>2</sub> (2.0 eq) in Et<sub>2</sub>0 (-78°, 1h  $\rightarrow$ r.t., 3h, entry 2). Hydrogenation of <u>2b</u> using the soluble Felkin-Crabtree catalyst Ir(cod)pyP(Cy<sub>3</sub>)PF<sub>6</sub> <sup>8</sup> displayed only poor stereoface discrimination (entry 3). By contrast and to our surprise, conventional, heterogenous catalysis with Pd/C under 30 psi H<sub>2</sub> (48h) provided <u>3b</u> with >90%  $\pi$ -face selection (entry 4). On increasing the H<sub>2</sub> pressure to 95 psi the reaction was complete within 1.5h <sup>9</sup> to give <u>3b</u> <sup>7</sup> with virtually quantitative topological control (accounting for the 98:2-E/Z-ratio of <u>2b</u>, entry 5). Under similar conditions the Ptcatalyzed hydrogenation was slower and less stereoselective (entry 6).

To examine the scope and limits of the strikingly simple and efficient reaction conditions described in entry 5 <sup>9</sup> the hydrogenation of a series of  $\beta$ , $\beta$ -disubstituted imides <u>2</u> were studied (Table 2).

Table 2: Asymmetric Hydrogenation of  $\underline{2}$  with H<sub>2</sub> (100 psi), Pd/C, EtOH: Variation of R<sup>1</sup> and R<sup>2</sup>.

| Entr | У                                    | Substrate                        |                   |                                                                  | Product -           |                                      |  |  |
|------|--------------------------------------|----------------------------------|-------------------|------------------------------------------------------------------|---------------------|--------------------------------------|--|--|
|      | R <sup>1</sup> /                     | / R <sup>2</sup>                 | E/Z <sup>a)</sup> | R <sup>3</sup>                                                   | Yield <sup>b)</sup> | Ratio <sup>b)</sup>                  |  |  |
|      |                                      |                                  |                   |                                                                  | <u>3</u> + <u>4</u> | <u>3</u> : <u>4</u>                  |  |  |
| а    | C <sub>2</sub> H <sub>5</sub>        | СН <sub>З</sub>                  | >99.9: 0.1        | С <sub>2</sub> Н <sub>5</sub>                                    | 99(88)              | (>99.5:<0.5) <sup>d)</sup>           |  |  |
| b    | nC <sub>3</sub> H <sub>7</sub>       | CH3                              | 99 : 1            | nC <sub>3</sub> H <sub>7</sub>                                   | 95                  | 98 : 2 <sup>c,e)</sup>               |  |  |
| с    | iC <sub>3</sub> H <sub>7</sub>       | CH <sub>3</sub>                  | 99 : 1            | iC <sub>3</sub> H <sub>7</sub>                                   | 97                  | 95.5: 4.5 <sup>c,d)</sup>            |  |  |
| đ    | nC4H9                                | CH3                              | 97.7: 2.3         | nC4H9                                                            | 95                  | 95 : 5 <sup>c,e)</sup>               |  |  |
| е    | nC <sub>6</sub> H <sub>13</sub>      | CH3                              | 98 : 2            | <sup>nC6H13</sup>                                                | 99                  | 96 : 4 <sup>c,d,e)</sup>             |  |  |
| f    | nC <sub>8</sub> H <sub>17</sub>      | CH <sub>3</sub>                  | 99.8: 0.2         | nC <sub>8</sub> H <sub>17</sub>                                  | 93                  | 96.2: 3.8 <sup>c,d,e)</sup>          |  |  |
| g (C | $(H_2)_2 CH = C(CH_3)_2$             | CH3                              | 99.2: 0.8         | (CH <sub>2</sub> ) <sub>3</sub> C(CH <sub>3</sub> ) <sub>2</sub> | 96(69)              | 95(>99.5): 5(<0.5) <sup>c,d,e)</sup> |  |  |
| h CH | (CH <sub>2</sub> ) <sub>2</sub> CH=0 | C(CH <sub>3</sub> ) <sub>2</sub> | 1.7:98.3          | (CH <sub>2</sub> ) <sub>3</sub> C(CH <sub>3</sub> ) <sub>2</sub> | 96                  | 4.3:95.7 <sup>c,d,e)</sup>           |  |  |
| a) c | apillary GC; b) ci                   | rude (cr                         | ystalline);       | c) capillary GC                                                  | of the m            | ixture <u>3+4</u> . The amides       |  |  |

derived from 5+6 and(+)-(R)- $\alpha$ -naphthylethylamine were analyzed d) by capillary GC and e) by HPLC

The extent of chiral induction was conveniently determined by direct capillary GC analyses of the crude reaction mixtures. Saponification of products 3 and 4 with 1.23 N LiOH (8 eq) in THF/H<sub>2</sub>O (7:3, r.t. 18h) afforded the  $\beta$ -substituted carboxylic acids 5 <sup>6</sup> and 6 <sup>6</sup> in 92 to 100% yield after distillation. Their absolute configurations were assigned based on chiroptic comparison with published values <sup>10</sup>. The enantiomeric purities of acids 5 and 6, as determined by GC and analyses of their  $\alpha$ -ethylnaphthylethylamides <sup>12</sup> parallel the diastereoisomer ratios 3:4.

Several aspects of Table 2 are noteworthy. Entries <u>a</u> and <u>g</u> show that products <u>3a</u> and <u>3g</u> can be purified by crystallization and thus obtained efficiently in virtually 100% diastereomeric purity. Comparison of entries <u>g</u> and <u>h</u> illustrates the expected correlation of topological control with olefin geometry. Accordingly, the E-alkene <u>2g</u> furnished the (R)-dihydrocitronellic acid <u>5g</u> whereas the Z-alkene <u>2h</u> gave the antipodal (S)-acid <u>5h</u> with the same level of 90% stereoface discrimination.

Scheme 2





The observed direction and extent of diastereoface differentiation on Pd/C.catalyzed hydrogenations of imides <u>2</u> may be rationalized by figure <u>A</u>, R<sup>4</sup>=H (Scheme 2). Thus, we assume coordination of the SO<sub>2</sub>- and C=O oxygens as well as of the olefinic bond to the metal surface from the sterically less hindered Ca-Re face followed by H-transfer to the same face. Consistent with this postulate the analogous hydrogenations of  $\alpha$ -branched acrylimides <u>8</u>, R<sup>4</sup>= $nC_3H_7$ , R<sup>1</sup>=H and of <u>8</u>, R<sup>4</sup>= $CH_3$ , R<sup>1</sup>= $C_2H_5$  showed only 32% and 23% face differentiation, respectively; apparently, C=C/C=O synplanarity is excluded here for reasons of steric repulsion between R<sup>4</sup>/C(3).

In conclusion we believe that the employment of covalently bound but easily recoverable chiral auxiliaries enlarges significantly the scope of asymmetric alkene hydrogenations <sup>13</sup>. This issue is currently subject of further investigation in this laboratory.

<u>Acknowledgements</u>: Financial support of this work by the Swiss National Science Foundation, Sandoz Ltd, Basel, and Givaudan SA, Vernier, is gratefully acknowledged. We thank Mr. J.P. Saulnier, Mr. A. Pinto and Mrs. D. Clément for NMR and MS measurements.

## REFERENCES AND NOTES

- <sup>1</sup> W.S. Knowles, M.J. Sabacky, J. Chem. Soc. Chem. Commun. <u>1968</u>, 1445; W.S. Knowles, M.J. Sabacky, B.D. Vineyard, D. J. Weinkauff J. Am. Chem. Soc. <u>1975</u>, 97, 2567; H.B. Kagan, Pure Appl. Chem. <u>1975</u>, 43, 401; M.D. Fryzuk, B. Bosnich J. Am. Chem. Soc. <u>1977</u>, 99, 6262; L. Horner, Pure Appl. Chem. <u>1980</u>, 52, 843; J. Padmakumari Amma, J.K. Stille, J. Org. Chem <u>1982</u>, 47, 468, and references cited therein;K. Drauz, A. Kleeman, J. Martens, Angew. Chem. <u>1982</u>, 94, 590; Angew. Chem. Int. Ed. Engl. <u>1982</u>, 21, 584.
- <sup>2</sup> W. Oppolzer, C. Chapuis, G. Bernardinelli, *Helv. Chim. Acta* <u>1984</u>, 67, 1397.
- <sup>3</sup> The acid chlorides <u>la</u> to <u>lf</u> were prepared by conjugate addition of  $R_2^1$ CuLi or  $R^1$ Li.CuI to methyl 2-butynoate <sup>4</sup>, followed by saponification (NaOH, aq. MeOH, r.t.) and treatment with oxalyl chloride, benzene, r.t.. Acid chlorides <u>lg</u> and <u>lh</u> were obtained by treatment of the corresponding acids <sup>5</sup> with oxalyl chloride.
- <sup>4</sup> E.J. Corey, J. A. Katzenellenbogen, J. Am. Chem. Soc. <u>1969</u>, 91, 1851; R.J. Anderson, V.L. Corbin, G. Cotterrell, G.R. Cox, C.A. Henrick, F. Schaub, J.B. Siddall, *ibid*. <u>1975</u>, 97, 1197.
- <sup>5</sup> D. Valentine Jr., K.K. Johnson, W. Priester, R.C. Sun, K. Toth, G. Saucy, *J. Org. Chem.* <u>1980</u>, 45,3698; D. Valentine Jr., R.C. Sun, K. Toth, *ibid.* <u>1980</u>, 45, 3703.
- <sup>6</sup> All new compounds were characterized by <sup>1</sup>H-NMR (360 MHz), IR and MS.
- <sup>7</sup> For the hydrogenation of non-functionalized alkenes with LiAlH<sub>4</sub>/CoCl<sub>2</sub> see: E.C. Ashby, J.J. Lin, J. Org. Chem <u>1978</u>, 43, 2567.
- <sup>8</sup> R.H. Crabtree, H. Felkin, T. Fillebeen-Khan, G. Morris, J. Organomet. Chem. <u>1979</u>, 168, 183.
- <sup>9</sup> A solution of <u>2</u> (0.1 mmol) in anhydr. EtOH (5ml) containing 10% Pd on activated charcoal (13mg, Fluka) was shaken under H<sub>2</sub> using a *Parr* hydrogenator.
- <sup>10</sup> Reported [α]<sub>D</sub>-values: "Stereochemistry, Fundamentals and Methods" Vol. 4, Ed. H.B. Kagan, G. Thieme, Stuttgart 1977; see also <u>5a</u>, <u>5d</u>, <u>5f</u> <sup>11</sup> <u>5g</u>, <u>5h</u>, <sup>5</sup>.
- <sup>11</sup> W. Oppolzer, R. Moretti, T. Godel, A. Meunier, H. Löher, *Tetrahedron Lett*. <u>1983</u>, 24, 4971.
- <sup>12</sup> W.H, Pirkle, J.R.Hauske, J. Org. Chem. <u>1977</u>, 42, 1839.
- <sup>13</sup> The narrow limitations in the use of chiral catalysts are illustrated by the modestly enantioselective hydrogenations of (E)- and (Z)- 3,7-dimethylocta-2,6-dienoic acids <sup>5</sup> as well as of neral and citronellal <sup>14</sup>. For an alternative asymmetric synthesis of  $\beta$ substituted carboxylic acids see <sup>11</sup> and <sup>15</sup>.
- <sup>14</sup> T.-P. Dang, Aviron-Violet, Y. Colleville, J. Varagnat, J. Mol. Catalysis <u>1982</u>,16,51.
- <sup>15</sup> W. Oppolzer, P. Dudfield, T. Stevenson, T. Godel, Helv. Chim. Acta <u>1985</u>, 68, 212.

(Received in Germany 25 October 1985)